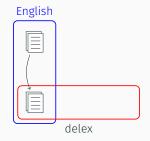


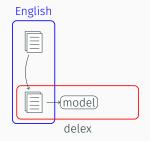
Zero-resource Dependency Parsing: Boosting Delexicalized Cross-lingual Transfer with Linguistic Knowledge

Lauriane Aufrant, Guillaume Wisniewski, François Yvon December 13, 2016

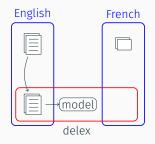
 $\begin{cases} \text{No annotated data} \\ \text{No parallel data} \\ \text{No raw data} \end{cases} \Longrightarrow \text{delexicalized cross-lingual transfer} \end{cases}$


 $\begin{cases} \text{No annotated data} \\ \text{No parallel data} & \Longrightarrow \text{delexicalized cross-lingual transfer} \\ \text{No raw data} \end{cases}$

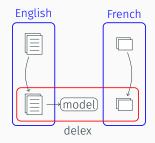



No parallel data \implies delexicalized cross-lingual transfer No raw data

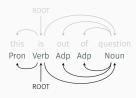
No annotated data No parallel data \implies delexicalized cross-lingual transfer No raw data



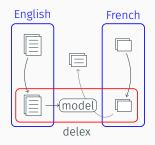
No annotated data No parallel data \implies delexicalized cross-lingual transfer No raw data


portée autre rive est hors de

No annotated data No parallel data \implies delexicalized cross-lingual transfer No raw data

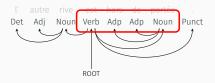


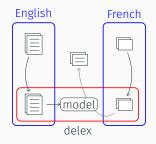
Adj Det Noun Verb Adp Adp Noun Punct



No annotated data No parallel data No raw data

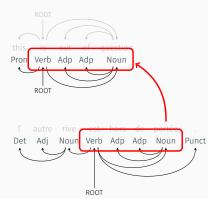
No parallel data \implies delexicalized cross-lingual transfer

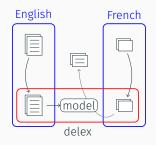

l' autre rive est hors de portée . Det Adj Noun Verb Adp Adp Noun Punct



No annotated data No parallel data No raw data

No parallel data \implies delexicalized cross-lingual transfer

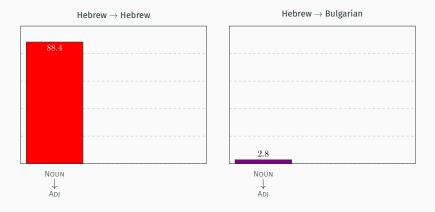




No annotated data No parallel data No raw data

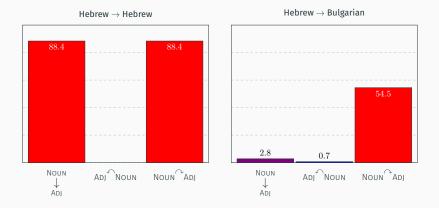
No parallel data \implies delexicalized cross-lingual transfer

True in...


✓ English✓ Hebrew

✓ French✓ Bulgarian

True in...


✓ French✓ Bulgarian

True in...

✓ English✓ Hebrew

✓ French✓ Bulgarian

A step towards scaling to the 7,000 languages in the world

 \hookrightarrow zero-resource dependency transfer

Many transfer errors are easy to avoid

- \hookrightarrow regular divergences between source and target
- \hookrightarrow word order issues

Our approach: leveraging previous works in linguistics (WALS)

- \hookrightarrow +3 UAS on average
- \hookrightarrow very efficient on some error types: up to +90 UAS

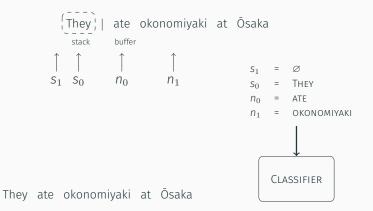
A fine-grained analysis across various language pairs

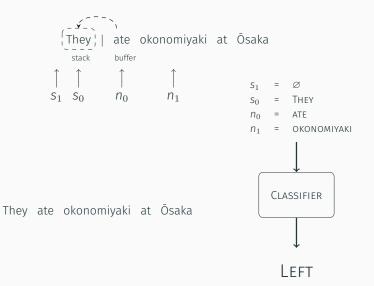
 \hookrightarrow 6,000+ experiments

- 1. Transition-based dependency parsing
- 2. Impact of word order on transfer
- 3. Leveraging WALS
- 4. Leveraging raw data
- 5. Wrap-up

Transition-based dependency parsing

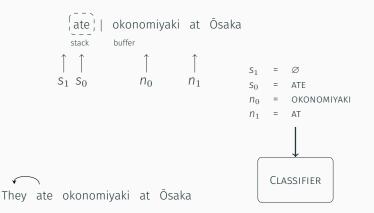
 $\left(\stackrel{\frown}{\perp} \right)_{stack}$ | They ate okonomiyaki at Ōsaka $_{stack}$ $_{buffer}$

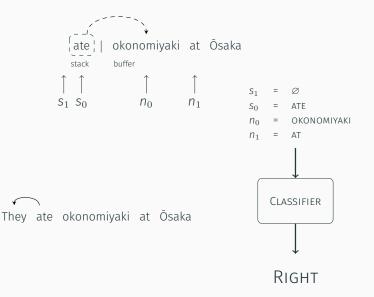

They ate okonomiyaki at Ōsaka



SHIFT

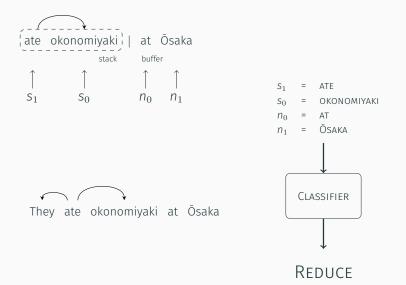
LEFT


Shift



They ate okonomiyaki at Ōsaka

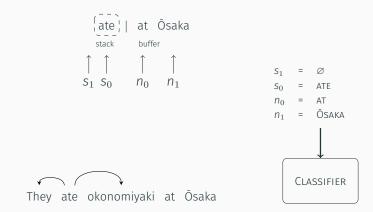
Shift



They ate okonomiyaki at Ōsaka

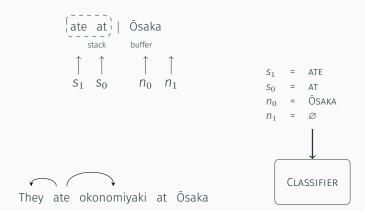
RIGHT

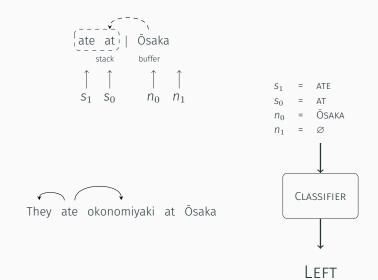
ate okonomiyaki 🖁 at Ōsaka stack buffer S_1 ATE = S_1 S_0 $n_0 n_1$ S_0 = OKONOMIYAKI n_0 AT = n_1 Ōsaka = CLASSIFIER They ate okonomiyaki at Ōsaka



They ate okonomiyaki at Ōsaka

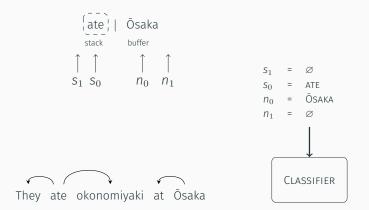
REDUCE

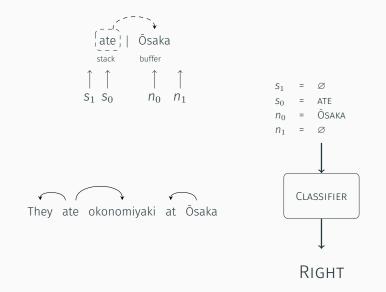



{ate at}| Ōsaka stack buffer

They ate okonomiyaki at Ōsaka

SHIFT





They ate okonomiyaki at Ōsaka

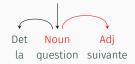
LEFT

RIGHT

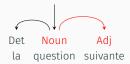
6

REDUCE

Reduce



Impact of word order on transfer


Towards language-independent data representations

- Words: delexicalized, common tagset
 ✓ UPOS [Petrov et al., 2012]
- Dependencies: common guidelines
 ✓ Universal Dependencies [Nivre et al., 2016]
- ... other regular divergences?

At model level:

 $(s_0 = ADJ \land n_0 = NOUN) \Rightarrow LEFT$

$$(s_0 = NOUN \land n_0 = ADJ) \Rightarrow RIGHT$$

At model level: different features + different decisions $(s_0 = ADJ \land n_0 = NOUN) \Rightarrow LEFT$ $(s_0 = NOUN \land n_0 = ADJ) \Rightarrow RIGHT$

different features + different decisions At model level: $(s_0 = ADJ \land n_0 = NOUN) \Rightarrow LEFT$ $(s_0 = NOUN \land n_0 = ADJ) \Rightarrow RIGHT$

Noun

 $\mathsf{English} \to \mathsf{French}$

Adi

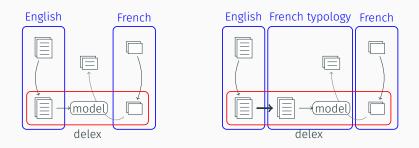
On accuracy:

 $\mathsf{English} \to \mathsf{English}$

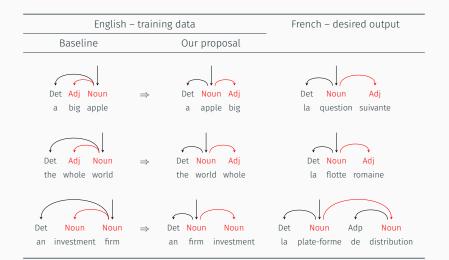
At model level: different features + different decisions $(s_0 = ADJ \land n_0 = NOUN) \Rightarrow LEFT$ $(s_0 = NOUN \land n_0 = ADJ) \Rightarrow RIGHT$

On accuracy:

no knowledge sharing + transfer errors


 $English \rightarrow English$

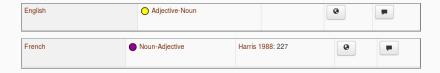
Leveraging WALS


Our proposal:

preprocess source data, to match target regularities

- \hookrightarrow same dependency annotations
- \hookrightarrow same training process

Reshaping training instances... a few examples



The World Atlas of Language Structures

\hookrightarrow Over 1,000 languages with word order features

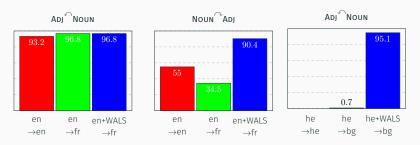
THE WORLD ATLAS OF LANCUAGE STRUCTURES ONLINE							
Home	Features	Chapters	Languages	References	Authors		
Feature 87A: Order of Adjective and Noun						Values	
This feature is described in the text of chapter 87 Order of Adjective and Noun by					euro bu	 Adjective-Noun 	373
					 Noun-Adjective 	878	
Matthew S. Dryer cite						 No dominant order 	110
You may combine this feature with another one. Start typing the feature name or number in the field below.						 Only internally-headed relative clauses 	5

Using WALS

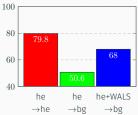
Heuristic rule extraction for **switching** and **deleting** tokens 87A {[English] Adjective-Noun [French] Noun-Adjective

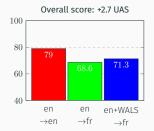
 \implies [English \rightarrow French] switch (most?) ADJ-NOUN into NOUN-ADJ

Using WALS

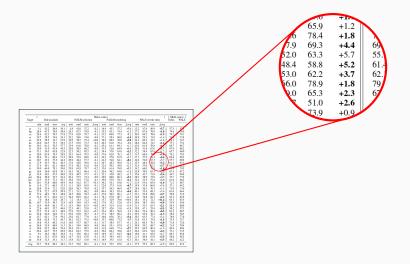

Heuristic rule extraction for **switching** and **deleting** tokens 87A {[English] Adjective-Noun [French] Noun-Adjective

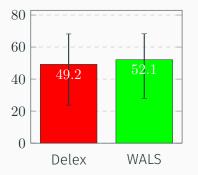
 \implies [English \rightarrow French] switch (most?) ADJ-NOUN into NOUN-ADJ


- ✓ easily extensible rule templates
 - $\,\hookrightarrow\,$ switch tokens, but also delete, insert, replace...
- ✓ accepts free order
- ✓ mostly conservative for related languages
- ✓ readily available for 1,000 languages
- \checkmark most work already done by linguists


Experimental results on UD 1.3

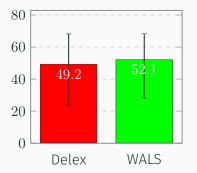
${\sf English} \to {\sf French} \qquad \qquad {\sf Hebrew} \to {\sf Bulgarian}$


Overall score: +17.4 UAS



Experimental results on UD 1.3... over 40 languages

 \hookrightarrow 6,000+ experiments


\hookrightarrow 6,000+ experiments

Average improvement: +2.9 UAS

+0.1 on best sources +4.2 on worst sources

\hookrightarrow 6,000+ experiments

Average improvement: +2.9 UAS

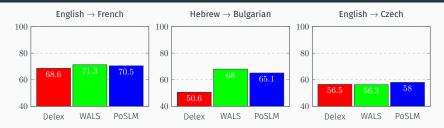
+0.1 on best sources +4.2 on worst sources

✓ Very efficient on nearly deterministic reorderings

- ✓ Specific error correction: many pairs (21%) have a very large (50+) improvement on at least one frequent tag pair
- ✓ Rarely detrimental

Leveraging raw data

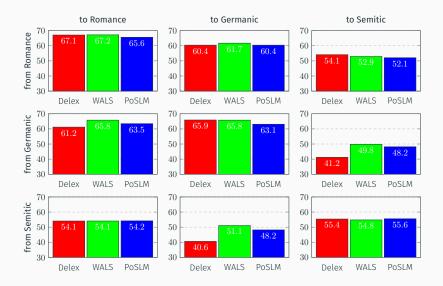
Contrastive experiment:


knowledge-driven method \iff data-driven method

 \hookrightarrow use a target language model to reorder the PoS sequence

Procedure:

- train a PoSLM on delexicalized raw target data
- \cdot generate local reordering lattices for source data
- score them with the PoSLM
- keep the best projective reordering


Comparative results

Average improvement: +2.3 UAS

Language family analysis

PoSLM approach: pros and cons

- ✗ can only reorder tokens
- 🗡 does not acknowledge free order
- ✓ captures more diverse reordering patterns
- not *really* zero-resource
 in theory applicable to any language
 much more involved method
- imes too hard constraints for closely related sources
- ✗ sometimes out of control
- ✓ combine with known typology?

Wrap-up

- Zero-resource scenario: target 1,000 languages, delexicalized cross-lingual transfer
- Despite common guidelines, regular divergences still affect representations, at model level
 ⇒ poor knowledge sharing, transfer errors
- We reshape training examples, using target word order
 ⇒ large improvements on specific errors
- Two setups: the naive knowledge-rich approach outperforms the involved data-driven method

- Zero-resource scenario: target 1,000 languages, delexicalized cross-lingual transfer
- Despite common guidelines, regular divergences still affect representations, at model level
 ⇒ poor knowledge sharing, transfer errors
- We reshape training examples, using target word order
 ⇒ large improvements on specific errors
- Two setups: the naive knowledge-rich approach outperforms the involved data-driven method

Appendix: more examples

English

$$\overline{}$$

Det Noun Adp Noun la voiture du voisin


 $(s_0 = NOUN \land n_0 = NOUN) \Rightarrow LEFT$

 $(s_0 = NOUN \land n_0 = NOUN) \Rightarrow RIGHT$

Limits of feature engineering

Full abstraction from word order is not desirable