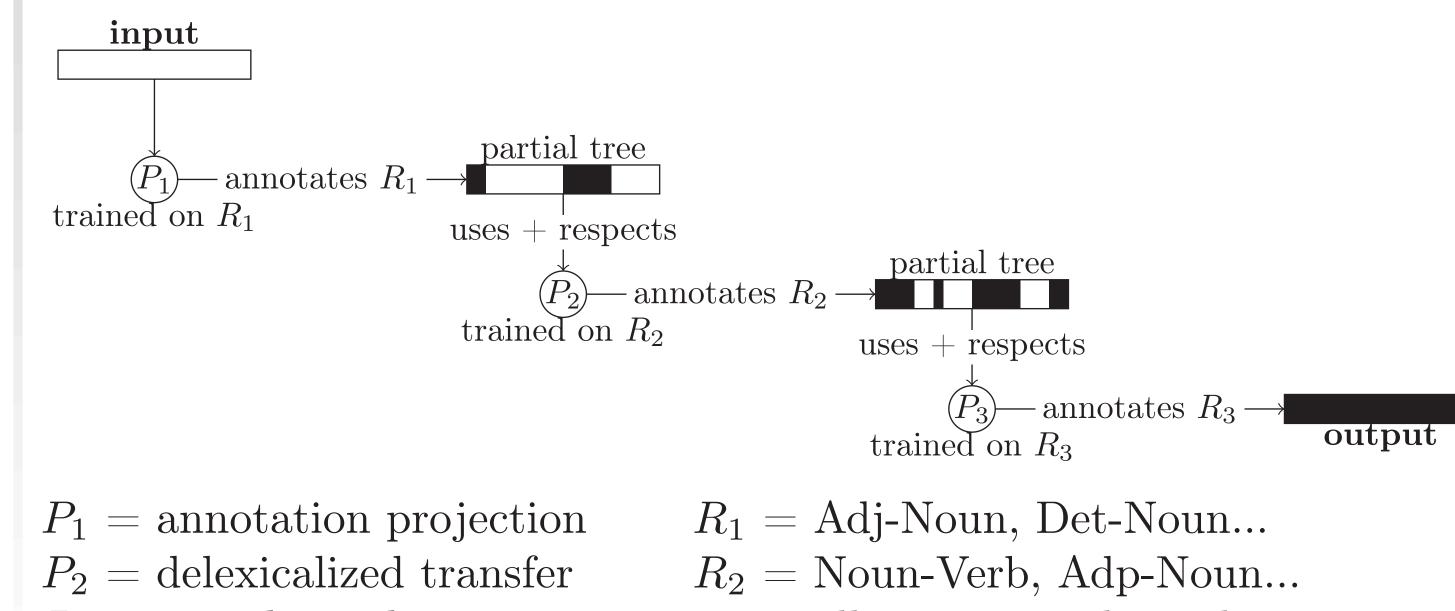


LIMSI@CoNLL'17: UD Shared Task

Lauriane Aufrant^{1,2}, Guillaume Wisniewski¹

(1) LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, (2) DGA {lauriane.aufrant, guillaume.wisniewski}@limsi.fr

A NEW COMBINATION METHOD: CASCADE PARSERS



Procedure:

- Train several base parsers (eg. P_1, P_2, P_3) on various resources
- Evaluate their competence regions (eg. R_1, R_2, R_3): attribute each dependency type to the parser that annotates it best
- **Retrain** each parser in turn: only on its region, and **using the outputs** of the previous parsers as enriched input
- At test time: annotate the input with each parser in turn, producing partial trees that grow at each step

 $R_3 =$ all remaining dependencies

STRATEGY FOR THE SHARED TASK

Using development data, we compare and submit different parsers for each treebank. Depending on the available resources, the best parser may differ.

Competition between:

- Monolingual parsers: UDPipe (neural), PanParser (perceptron), Delex • Cross-lingual parsers:
 - X-Delex, using delexicalization and WALS rewrite rules
 - Project, using annotation projection of partial trees
 - Multi-source Delex, using KL_{cpos^3} language similarity
- Cascade parsers: UDPipe+PanParser, Project+X-Delex+PanParser... \hookrightarrow Diversity compensates for small/incomplete data

Source languages for cross-lingual parsers are chosen heuristically, based on WALS features, KL_{cpos^3} language similarity and treebank sizes.

Relation labels are predicted in a second step, with similar combination methods.

OVERALL RESULTS

	UDPipe [off.]		LIMSI [off.]		LIMSI [unoff.]		
	F1/LAS	Rank	-	F1/LAS	Rank	F1/LAS	Rank
Tokenization	98.77	8		98.95	1	98.95	
All tags	73.74	4		73.86	2	73.86	
All treebanks	68.35	13		67.72	17	68.90	12
$\operatorname{Big}(55)$	73.04	17		73.64	13	73.64	
PUD(14)	68.33	13		62.24	26	69.07	
Small (8)	51.80	15		51.71	16	51.71	
Surprise (4)	37.07	11		37.57	9	37.57	

Main conclusions:

- Cascading proves successful in low-resource settings but still faces reliability challenges: lack of confidence mechanisms, unreliability of delexicalized models when PoS accuracies are low...
- **Tuning/development data** remain a bottleneck of our method, both for accurate estimation of competence regions and for model selection.

WALS rewrite rules: see [Aufrant et al., 2016] Partial projection: see [Lacroix et al., 2016] KL_{cpos³} language similarity: see [Rosa and Zabokrtsky, 2015]

- End-to-end parsing rewards a lot **good tokenization**.
- Our ranking is mostly penalized by **huge unexpected drops** on the PUD treebanks (cf discussion).

PER-TREEBANK RESULTS: COMPARISON WITH THE UDPIPE BASELINE

Languages with custom tokenization:

- Japanese: +4.14% on tokenization (using KyTea) $\Rightarrow +7.80$ LAS
- Chinese: +2.44% on tokenization (using KyTea) $\Rightarrow +2.58$ LAS
- Vietnamese: +4.83% on tokenization (by postprocessing multi-token words) $\Rightarrow +4.55$ LAS

PUD treebanks: submission of one of the models trained on this language

- Official run (using the treebank with best LAS on own devset): -6.09 LAS
- Unofficial run (using always the main treebank, as the baseline did): +0.74 LAS

Other treebanks (including surprise ones):

$\begin{array}{c} {\rm Treebank\ size}\\ (\#{\rm sentences}) \end{array}$	# languages $>$ baseline	# languages $<$ baseline	# baseline submissions	$\begin{array}{c} \text{Avg gain} \\ \text{(LAS)} \end{array}$
$> 10,\!000$	3	2	15	+0.06
$1,\!00010,\!000$	18	5	9	+0.44
$<1{,}000$	10	2	0	+0.33

 \implies Our strategy is most effective on small treebanks.

KyTea: see Neubig et al., 2011

DISCUSSION: PUD AND CROSS-TREEBANK CONSISTENCY

The shared task results unveiled huge drops on the PUD treebanks, depending on the training treebank, for the same model and language. \hookrightarrow They are not entirely explained by treebank size or domain.

Experiments with UDPipe: preprocess with the model from treebank A, parse with the model from treebank B, evaluate on the PUD treebank.

Tok/tag	Parser	LAS on PUD	Tok/tag	Parser	LAS on PUD
	en en en_lines en_lines	78.95 63.42 47.30 64.28	fi fi_ftb fi fi_ftb	fi fi fi_ftb fi_ftb	78.65 × 52.80 44.99 47.27 ×
ru ru_syn. ru ru_syn.		<pre> 68.31 68.18 52.36 59.87 </pre>	$sv_{sv_{sv_{sv_{sv_{sv_{sv_{sv_{sv_{sv_{$	sv_lines	

Detection of some annotation issues:

- Multi-token words preannotated with ' '(el, fi_ftb, ru_syntagrus)
- Raw text is already tokenized (da, fi_ftb)
- Incompatible preprocessing among treebanks (English, Portuguese, Swedish)
- Possibly, incompatible parsing schemes (Finnish, Russian, Spanish...)