

Cross-lingual alignment transfer: a chicken-and-egg story? Lauriane Aufrant^{1,2}, Guillaume Wisniewski¹, François Yvon¹

LIMSI-CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, (2) DGA (1){lauriane.aufrant, guillaume.wisniewski, francois.yvon}@limsi.fr

OVERVIEW

- While many cross-lingual transfer techniques rely on the availability of word-aligned parallel corpora, reliable word alignments can only be computed for large-scale parallel corpora, a situation that is unlikely to happen for actual under-resourced languages.
- In this work, we consider transfer methods to improve the quality of word alignments for parallel corpora of very small size, eg. a few hundred sentences. We draw a typology of realistic scenarios for **cross-lingual alignment transfer** and address one of them with several baseline methods.
- From evaluation with both intrinsic and extrinsic metrics, we show that even straightforward methods can prove useful, and that **language similarities** can be successfully leveraged. We also assess that direct transfer is better done in the domain of the bridge language.

ALIGNMENT TRANSFER: SCENARIOS OF INTEREST

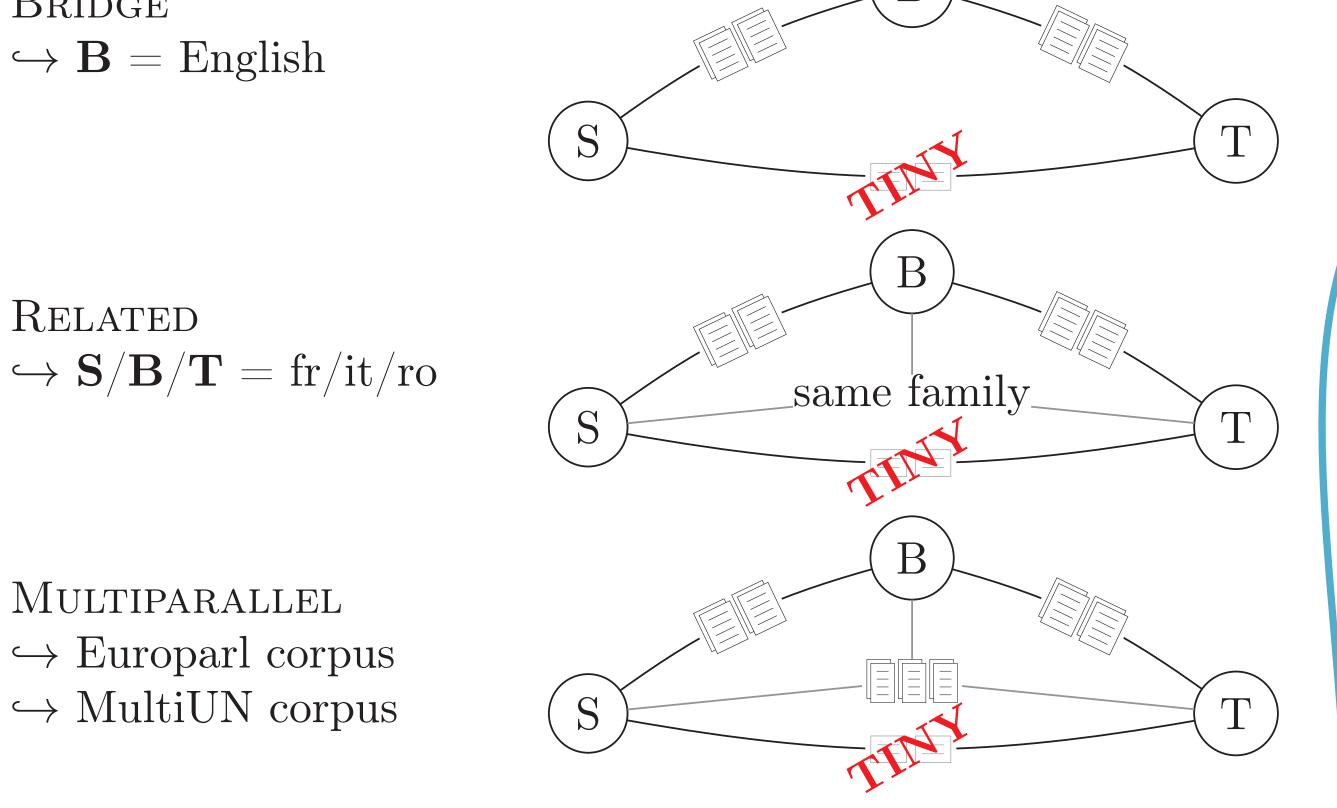
GENERAL TRANSFER METHODS

In data space

Generate artificial target data and annotations to train target models.

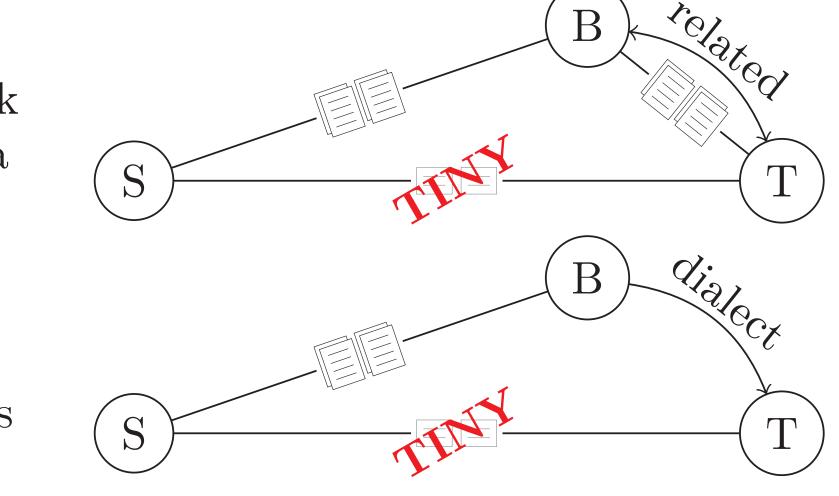
 \hookrightarrow Direct transfer, delexicalization, annotation projection...

In parameter space


Use source model parameters to build target models.

 \hookrightarrow Mixture model, parameter sharing, priors...

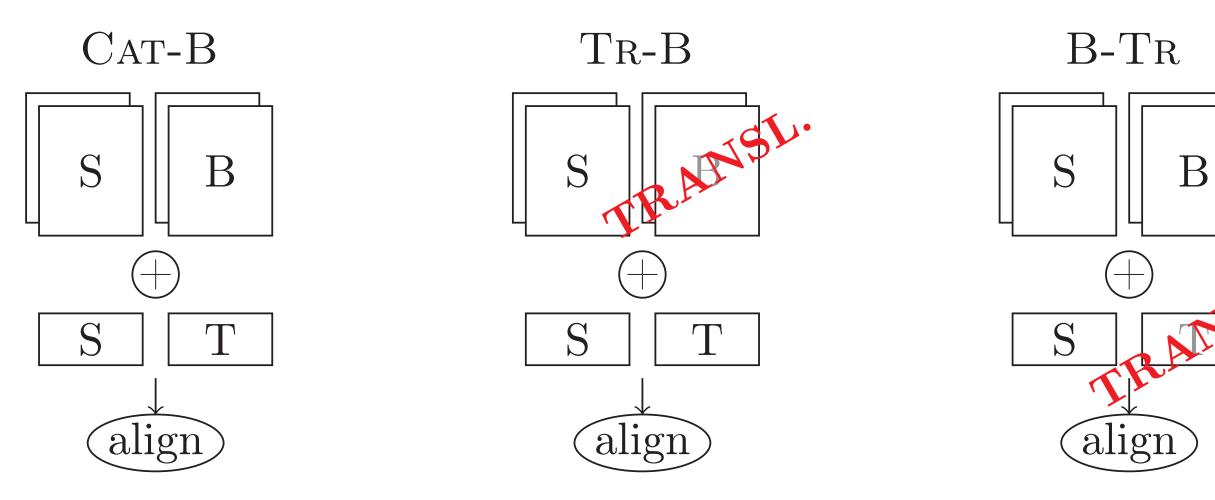
We investigate improving word alignment between two languages S (source) and T (target), using a bridge language B. Depending on the availability of parallel data and on similarities between languages, we identify 5 scenarios of interest.



Related

Directed Bridge $\hookrightarrow \mathbf{S}/\mathbf{B}/\mathbf{T} = \mathrm{en/ru/uk}$ $\hookrightarrow \mathbf{S}/\mathbf{B}/\mathbf{T} = \mathrm{en/zh/ja}$

DIALECT $\hookrightarrow \mathbf{B}/\mathbf{T} = \mathrm{MS}$ Arabic and dialects


Notes

- Annotation projection is only applicable in the MULTIPARALLEL scenario.
- Delexicalized transfer raises chicken-and-egg issues.
- Two instances of DIRECTED BRIDGE provide a baseline for RELATED.
- The method choice also depends on the task needing S-T alignments.

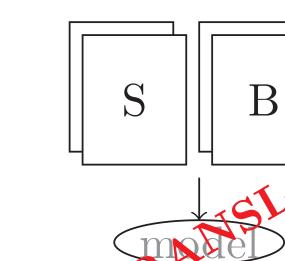
BASELINE METHODS FOR THE DIRECTED BRIDGE SCENARIO

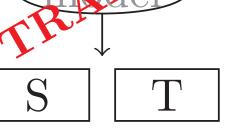
Methods for transfer in data space

The test data in pair S-T is **aligned together** with large parallel data in pair S-B.

Methods for transfer in parameter space

The large S-B parallel data is used to **build an alignment model**, applied in a second step on S-T test data.


GLOSSES-B


 \bigcirc mode \bigcirc

В

S

PARAM-B

For each method, we investigate further improvements with word-for-word translations of parts of the data or the model.

EXPERIMENTS AND ANALYSIS

Data			Swedish only		Danish data			Greek data			Danish parameters		
• Train: Europarl (English, Swedish, Greek, Danish)		baseline	cat-sv	cat-da	tr-da	da-tr	cat-el	tr-el	el-tr	da	glosses-da	param-da	
• Test: 192 English-Swedish sentence pairs, manually	A IBM 1	53.9	26.5	57.0	31.1	29.6	74.3	35.9	37.4	66.0	28.3	33.3	
word-aligned [Holmqvist and Ahrenberg, 2011]	E HMM	35.3	15.3	41.9	20.5	16.8	58.3	26.9	26.4	46.7	16.4	25.8	
 Evaluation Intrinsic: Alignment Error Rate 	R IBM 4	33.9	12.3	35.8	16.4	14.0	50.0	20.6	21.7	49.1	14.8	24.3	
	_P IBM 1	68.7	73.3	58.7	73.8	74.0	47.4	71.9	71.5	67.0	72.2	71.1	
	o HMM	69.9	73.8	71.9	73.5	73.6	66.6	73.4	71.9	69.5	73.4	72.4	
• Extrinsic: PoS accuracy of a cross-lingual PoS tagger	S IBM 4	73.0	74.7	74.0	73.9	74.9	72.0	73.4	73.5	66.7	73.6	72.0	
[Wisniewski et al., 2014]													

AER (IBM 4)cat-el 40 cat-da da-tr 2014el-tr tr-da #pairs 10^{6} 10^{2} 10^{4}

Language similarities are leveraged

• Danish is **closely related** to Swedish, Greek is not; and Danish as a bridge clearly outperforms Greek. • Transfer through unrelated languages is still useful.

Even straightforward methods are effective

- AER: up to **59**% relative error reduction.
- Cross-lingual task: up to **5.3**% PoS accuracy absolute improvement.

High return ratio for cross-lingual knowledge extraction

• Knowledge equivalent to one English-Swedish pair can be extracted from **five** English-Danish pairs.

A first step towards more general conclusions

- Model application with noisy proxies is better done in the **original domain** of the model.
- Even a very small piece of target data contains valuable knowledge.

NAACL'16 Workshop on Multilingual and Cross-lingual Methods in NLP